New Learning Method of Neural Network by Pseudo Inverse Technique.
نویسندگان
چکیده
منابع مشابه
solution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Neural Network Learning as an Inverse Problem
Capability of generalization in learning of neural networks from examples can be modelled using regularization, which has been developed as a tool for improving stability of solutions of inverse problems. Such problems are typically described by integral operators. It is shown that learning from examples can be reformulated as an inverse problem defined by an evaluation operator. This reformula...
متن کاملA New Method of Learning for Multi-Layer Neural Network
Backpropagation (BP) is one of the most widely used algorithms for training feed-forward neural networks. One critical drawback is that the BP easily falls into local minima. In this paper, we propose a new method of learning for multi-layer neural network which is not only an efficient method of selecting reasonable parameter but also a supervised method of preventing the BP to be trapped at s...
متن کاملA Conjugate Gradient-neural Network Technique for Ultrasound Inverse Imaging
In this paper, a new technique for solving the two-dimensional inverse scattering problem for ultrasound inverse imaging is presented. Reconstruction of a two-dimensional object is accomplished using an iterative algorithm which combines the conjugate gradient (CG) method and a neural network (NN) approach. The neural network technique is used to exploit knowledge of the statistical characteris...
متن کاملNeural Network-Based Inverse Kinematics for an Industrial Robot and Its Learning Method
The time required for the learning process of neural networks depends on the number of total weights and that of the input-output pairs in the training set. In the proposed learning process, after the learning is progressed, e.g., 1000 iterations, input-output pairs having had worse errors are extracted from the original training set and form a new temporary set. From the next iteration, the te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C
سال: 1994
ISSN: 0387-5024,1884-8354
DOI: 10.1299/kikaic.60.1699